N-Oxides and Related Compounds. Part XLVI.¹ Chemical and Physical Properties of Pyridine 1-Nitroimides and Comparison with Quantum **Chemical Predictions**

By Jean Arriau and Alain Dargelos, Laboratoire de Chimie Structurale, Faculté des Sciences, Université de Pau, Avenue Philippon, 64-Pau, France

Jan Epsztajn, Alan R. Katritzky,* Edward Lunt, James W. Mitchell, S. O. Abbas Rizvi, and Gilberto Roch, School of Chemical Sciences, University of East Anglia, Norwich NR4 7TJ

Molecular orbital treatment of pyridine 1-nitroimide predicts well the site of protonation, u.v. spectrum, and reactivity. The ring resists electrophilic attack but a protons are readily replaced by deuterium in the presence of base. The mass spectral fragmentation is elucidated.

FOLLOWING the preparation of diverse N-nitroimides,²⁻⁴ we reported briefly on their crystal structure and a comparison of their reactivity with theoretical predictions.¹ We now give further details of this and related work. The CNDO/2 and CNDO/S study (original parameterisation⁵) used bond lengths and angles from the X-ray structure of 3-bromopyridine 1-nitroimide,⁶ and gave $\theta = 43^{\circ}$ for the pyridine ring to N-N-NO₂ plane angle (experimental ca. 70°).¹ The oxygen atoms are strongly and the central nitrogen less strongly negatively charged; the terminal nitrogens are negatively charged. Ring carbon atoms are charged positively at 2, 4, and 6 and negatively at 3 and 5, the opposite to pyridine 1-oxide.¹ The adjacent hydrogen 300—340 nm essentially due to NO_2 and two stronger transitions at 260-280 nm. Change of solvent from H₂O to MeCN significantly affects the experimental spectrum (Table 1). Solvation energy terms (Table 1), calculated from the electrostatic energy of transfer from vapour to a homogeneous medium of dielectric constant equal to the solvent,⁷ are larger for the ground state than for the excited states, indicating that a hypsochromic shift should be found, in agreement with experiment.

Protonation of N-Nitroimides.— pK_a Values for proton addition to various N-nitroimides (Table 2) show the compounds to be weak bases. We gave previously¹ reasons for the expected predominance of O-protonated [cf. (2)] rather than N-protonated [cf. (1)] cations. The

TABLE 1

Calculated and experimental u.v. spectral maxima (nm) and ε values for pyridine 1-nitroimides

	Neutral form							Cation					
	Calculated			Found CH ₃ CN		Found H ₂ O		Calculated N-protonation		Calculated O-protonation		Found (in 80% H ₂ SO ₄)	
λ	A ª	b	λ	ε	λ	ε	λ	A	λ	A	λ	ε	
$\begin{array}{c} 339 \\ 296 \end{array}$	$\begin{array}{c} 0.012\\ 0.010\end{array}$	$\left. \begin{array}{c} 0.05656 \\ 0.05795 \end{array} ight\}$	320	3 200	300	1 800	306	0.036	388	0.003	359	1	
$\begin{array}{c} 277\\ 261 \end{array}$	$0.045 \\ 0.025$	$\left. \begin{array}{c} 0.054\ 79\\ 0.026\ 771 \end{array} \right\}$	265	С	260	4 400	$\begin{array}{c} 276 \\ 250 \end{array}$	$\begin{array}{c} 0.053 \\ 0.048 \end{array}$	$\begin{array}{c} 289 \\ 256 \end{array}$	$\begin{array}{c} 0.006 \\ 0.146 \end{array}$	256	5 950	
$\begin{array}{c} 230\\ 216 \end{array}$	$\begin{array}{c} 0.203 \\ 0.062 \end{array}$	$\left. \begin{array}{c} 0.065 \; 41 \\ 0.036 \; 001 \end{array} ight\}$	232	12 900	224	7 000	$\begin{array}{c} 230 \\ 214 \end{array}$	$\begin{array}{c} 0.017\\ 0.010\end{array}$	$\begin{array}{c} 221 \\ 206 \end{array}$	$\begin{array}{c} 0.082\\ 0.008\end{array}$	213	3 850	

• Oscillator strength. ^b Energy of ground state less energy of excited state with energy of solvation (atomic units). • Shoulder.

atom on the same side of the ring as the NO₂ group carries a considerable positive charge and is expected to show marked acid character. The weak polarisation of the ring carbon atoms relative to the N-N-NO₂ group is expected to favour ionic reactions at the N-NO₂ group.

U.v. Spectrum.-Pyridine 1-nitroimide absorbs in three regions (Table 1) in agreement with the CNDO2/S calculated spectrum of two rather weak transitions at

¹ Part XLV (preliminary account), J. Arriau, J. Deschamps, J. R. C. Duke, J. Epsztajn, A. R. Katritzky, E. Lunt, J. W. Mitchell, S. Q. A. Rizvi, and G. Roch, *Tetrahedron Letters*, 1974, 3865.

² J. Epsztajn, E. Lunt, and A. R. Katritzky, Tetrahedron,

1970, 26, 1665.
³ J. Epsztajn, A. R. Katritzky, E. Lunt, J. W. Mitchell, and G. Roch, J.C.S. Perkin I, 1973, 2622.
⁴ A. R. Katritzky and J. W. Mitchell, J.C.S. Perkin I, 1973,

⁵ J. A. Pople and G. A. Segal, *J. Chem. Phys.*, 1966, **44**, 3289; J. A. Pople, D. P. Santry, and G. A. Segal, *ibid.*, 1965, **43**, 3129; J. A. Pople and G. A. Segal, *ibid.*, 1965, **43**, S136; J. del Bene and H. H. Jaffé, *ibid.*, 1968, **48**, 1807.

cation shows a weak band at 359 nm (ε 1) in agreement with the spectrum calculated from the O-protonated form (Table 1).

Other Reactions with Electrophiles.—Pyridine 1-nitroimide and phosphorus trichloride gave pyridine in good yield, a behaviour analogous to that of pyridine N-oxide⁸ and a heteroaromatic N-imide.⁹ Whereas pyridine N-oxides and N-imides yield pyridones 10 and Nacylated products 11 with acetic anhydride, the Nnitroimide again gives pyridine (50%). Pyridine 1nitroimide could not be alkylated (MeI or CF₃SO₃Me),

J. R. C. Duke, to be published.

⁷ I. Jano, Compt. rend., 1965, **261**, 103.
⁸ M. Hamana, J. Pharm. Soc. Japan, 1951, **71**, 263; A. R. Katritzky and J. M. Lagowski, 'Chemistry of the Heterocyclic N-Oxides,' Academic Press, London, 1971, p. 197; E. Ochiai, 'Aromatic Amine Oxides,' Elevitica: Amsterdam 1067. 'Aromatic Amine Oxides,' Elsevier, Amsterdam, 1967, p. 195.

H.-J. Timpe, Z. Chem., 1972, 12, 333.

M. Katada, J. Pharm. Soc. Japan, 1947, 67, 15.
 A. Ohsawa, M. Hirobe, and T. Okamoto, J. Pharm. Soc. Japan, 1972, 92, 73.

nitrated (AcONO₂, PhCO₂NO₂,¹² NO₂BF₄,⁴ NaOEt-C₅H₁₁ONO₂⁴), brominated,¹³ or mercuriated.¹⁴

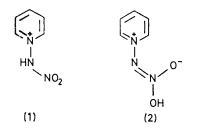
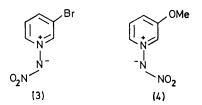

Base-catalysed Hydrogen Exchange.-Base-catalysed hydrogen-deuterium exchange, which we believe occurs

TABLE 2


N-Nitroimide p K_a values at 25 °C

Compound	$\mathrm{p}K_{\mathbf{a}}$	m ª	Analytical λ/nm
Pyridine 1-nitroimide	-4.6 ^b		
2-Methylpyridine	-3.57	1.11	245
1-nitroimide			
1,2,4-Triazole	-3.29	1.10	245
4-nitroimide			
Trimethylammonium	-4.2°		
N-nitroimide			
1-Methyl-1,2,4-triazole	-3.20	1.06	245
4-nitroimide			

^a d(log I)/d H_0 . ^b From ref. 2. ^c Determined by n.m.r. method (J. Epsztajn and A. R. Katritzky, Tetrahedron Letters, 1969, 4739).

by deprotonation to an ylide type intermediate, is followed by n.m.r.¹⁵ (Table 3). The 2- and 6-positions 4-methylpyridine 1-nitroimide and in the 2,4- and 2,6dimethyl analogues (Table 3). Surprisingly, no ringproton exchange was detected in these cases, although the 3-methyl derivative did exchange at the 2- and 6-positions. 3-Bromopyridine 1-nitroimide underwent exchange at the 6-position only, whereas 3-bromopyridine 1-oxide exchanges more readily at the 2position.¹⁸ By contrast, 3-methoxypyridine 1-nitroimide exchanges readily only the 2-proton, although the easy ring-opening of this compound hinders detailed study. These results, together with the MO calculations of charge on the individual ring hydrogen atoms,¹ suggest that the 3-bromo- and 3-methoxy-compounds exist in conformations (3) and (4) respectively in solution:

however, X-ray analysis ⁶ demonstrates a conformation of type (4) for the bromo-compound at least for the solid state.

Ring-opening.—Pyridine 1-nitroimide in 0.2N-NaOD-D₂O rapidly gave the ABB' spectrum of the 2,6dideuterio-nitroimide (6); the 4-proton shows as a quartet at δ 8.6 and the 3,5-protons as a multiplet at

TABLE 3

Base-catalysed hydrogen-deuterium exchange of pyridine N-nitroimides and related compounds

Substituents in pyridinium ring					[NaOD]/		Temp.	Time for exchange (h) ^a			
1	2	3	4	5	6	[NaOD]/ N	Solvent	(°C)	Methyl	H-2	H-6
N-NO ₂	\mathbf{H}	н	н	н	н	0.5	D_2O	25		0.2	0.2
N-NO ₂	Me	\mathbf{H}	н	н	\mathbf{H}	0.2	D_2O	35	< 0.2		> 20
N-NO,	\mathbf{H}	\mathbf{Me}	\mathbf{H}	н	\mathbf{H}	0.2	D_2O	25	Fast	> 6	> 6
N-NO2	Me	н	\mathbf{Me}	н	\mathbf{H}	0.2 ^b	D_2O	25	2.5		> 20
N-NO2	\mathbf{Me}	\mathbf{H}	н	\mathbf{H}	Me	0.2	D_2O	25	0.3		
N-NO,	\mathbf{H}	\mathbf{Br}	н	\mathbf{H}	\mathbf{H}	0.2	$(\tilde{CD}_3)_2 SO$	25		> 20	Fast
N-NO,	н	OMe	н	н	н	0.5	Ď₂OŰ	25		1.5	> 20
N-SO,Ph	н	OMe	\mathbf{H}	н	\mathbf{H}	0.5	$(\tilde{CD}_3)_2SO$	25		1.5	> 20
N−SO ₂ Ph	Н	н	н	H	۲¢	0.5	D ₂ O	35		0.2	0.2

^a No exchange was found in the 3-, 4-, or 5-positions (20-60 h). ^b Imide concentrations only 0.1 of usual value due to solubility problem. ^e From ref. 2.

of pyridine 1-nitroimide are rapidly exchanged at 25 °C, but not the 4-proton under conditions which do not cause ring opening. This orientation reflects the positive charge found on the *a*-protons by the MO calculations.¹ By comparison, exchange at the 2- and 6-positions in pyridine requires 200 °C; ¹⁶ in pyridine N-oxide base-catalysed 2,6-exchange occurs at 100 °C,17 whilst the 3-, 4-, and 5-protons are exchanged at 180 °C.

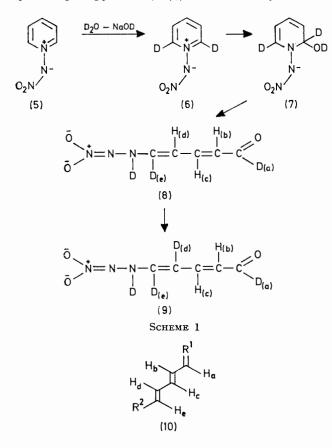
Rapid exchange occurs of the methyl protons in 2- and 12 E. Ochiai and C. Kaneko, Chem. and Pharm. Bull. (Japan), 1960, **8**, 28.

Resonance, 1975, 7, 569.

δ 8.18. With 2N-NaOD at 60 °C superimposed on the above low field resonances were the higher field spectra of the two partially deuteriated ring-opened products (8) and (9). The shifts and coupling constants for (8) and (9) are similar to those previously found ¹⁹ for other glutaconic aldehyde derivatives (Table 4). Ring opening of pyridine 1-nitroimide also occurs with ethoxide in ethanol at 80 °C.

¹⁶ J. A. Zoltewicz and C. L. Smith, J. Amer. Chem. Soc., 1967, **89**, 3358.

17 Y. Kawazoe, M. Ohnishi, and Y. Yoshioka, Chem. and Pharm. Bull. (Japan), 1964, 12, 1384. ¹⁸ R. A. Abramovitch, G. M. Singer, and A. R. Vinutha, Chem.

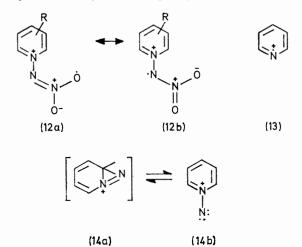

Comm., 1967, 55. ¹⁹ (a) E. Lunt, Ph.D. Thesis, University of East Anglia, 1968,

p. 134; (b) M. Martin and G. Martin, Compt. rend., 1963, 256, 403.

¹³ M. van Ammers, H. J. den Hertog, and B. Haase, Tetrahedron, 1962, **18**, 227. ¹⁴ M. van Ammers and H. J. den Hertog, *Rec. Trav. chim.*,

^{1958, 77, 340.} ¹⁵ A. R. Katritzky, M. Kinns, and E. Lunt, Org. Magnetic

Other Reactions .- Pyridine 1-nitroimide and potassium cyanide give pyridine (40%) whereas many N-oxides



form Reissert compounds. No reaction occurred with aniline and benzylamine. Grignard²⁰ and organolithium reagents afford complex mixtures, probably by attack at the nitro-group.²¹ Irradiation of pyridine 1-nitroimide in methanol or dichloromethane gave

N-imides can act as 1,3-dipoles; ²² pyridine 1-nitroimide and dimethyl acetylenedicarboxylate gave dimethyl pyrazolo[1,5-a]pyridine-2,3-dicarboxylate, a product previously obtained 22c from pyridine N-imide itself. 2-Methylpyridine 1-nitroimide reacted with 2,5-dimethyl-1-phenylpyrrole-3-carboxaldehyde to yield (11).

Mass Spectra of N-Nitroimides.—N-Ethoxycarbonyl-, N-acyl-, N-benzoyl-, and N-phenylsulphonyl-imides all

show molecular ions and frequently also a strong $M - 1^+$ ion due to ring H expulsion.^{23,24} By contrast

TABLE 4

N.m.r. shifts (8) for glutaconic aldehyde derivatives (10)

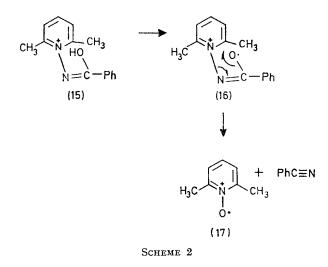
	Fo	rmula (10)						
Ref.	$\mathbf{\widetilde{R}^{1}}$	R ²	H_{b}	$\mathbf{H}_{\mathbf{c}}$	H_d	$J_{ m bc}/{ m Hz}$	$J_{ m ed}/{ m Hz}$	Solvent
†	O a	N·NDNO2-	6.2	7.5	5.8	15	12	$D_2O-NaOD$
ŧ	O a	N·NDNO2-	6.2	7.5		15		$D_2O-NaOD$
19 ª	0	OSO ₂ Ph	6.14	7.03	6.18	15.1	10.9	CDCl ₃
19 ª	0	NMe ₂	5.80	7.20	5.28	14.4	11.8	$CDCl_3$
19 ª	0	NCS	6.21	7.44	6.15	15.4	11.1	CDCl ₃
			4 D for H	in formula (10)	+ This work	-		

 D_a for H_a in formula (10). † This work.

pyridine (30%), but starting material (96%) was recovered after irradiation in benzene. Heteroaromatic

²⁰ T. Kato and H. Yamanaka, J. Org. Chem., 1965, **30**, 910.
²¹ M. S. Kharasch and O. Reinmuth, 'Grignard Reactions of Nonmetallic Substances,' Constable, London, 1954.
²² (a) Y. Tamura, N. Tsujimoto, Y. Sumida, and M. Ikeda, Tetrahedron, 1972, **28**, 21; (b) T. Shiba, K. Yamane, and H. Kato, Chem. Comm., 1970, 1592; (c) R. Huisgen, R. Grashey, and R. Krischler, Tathedron, 1962, 287; (d) Y. Kohayashi, T. Krischke, Tetrahedron Letters, 1962, (c) R. Hungelt, R. Glashey, and R. Krischke, Tetrahedron Letters, 1962, 387; (d) Y. Kobayashi, T. Kutsuma, and K. Morinaga, Chem. and Pharm. Bull. (Japan), 1971, 19, 2106; (e) T. Sasaki, K. Kanematsu, and A. Kakehi, J. Org. Chem., 1971, 36, 2978.

N-nitroimides do not show any strong molecular ion $[(12a) \longrightarrow (12b)]$. The major fragmentation patterns (Table 5) are believed to involve the loss of neutral fragments (a) N_2O_2 , to give (13) which fragments further by well established routes,²³ (b) NO₂, to give (14) fragmenting in the expected manner (cf. ref. 24), or (in some


²³ M. Ikeda, N. Tsujimoto, and Y. Tamura, Org. Mass Spectro-metry, 1971, 5, 61 (Chem. Abs., 1971, 74, 124,394d); ibid., p. 935 (Chem. Abs., 1971, 75, 129,003f).
 ²⁴ M. Ikeda, S. Kato, Y. Sumida, and Y. Tamura, Org. Mass.

Spectrometry, 1971, 5, 1383.

TABLE 5
Relative intensities of primary fragment ions for N-
nitroimides (as % of base peak)

N-Niti	roimide				
Ring Pyridine Pyridine Pyridine	Sub- stituent(s) 2-Me 3-Me	M^+ 29 12	${M^+ - \over { m N_2O_2}} {72 \over 100} {100}$	${M^+ \ - \ NO_2} \ 100 \ 63 \ 12$	${M^+ - \over { m N_2O}}$
Pyridine Pyridine Pyridine Pyridine Quinoline Isoquinolin	3-Br 3-OMe 2,4-Me ₂ 2,6-Me ₂ e	$1.3 \\ 3.2 \\ 5$	100 100 73 100 100 100	9 24 100	12 60 85

N-oxides.²³ The formation of such an ion was previously observed by Ikeda²³ from 2,6-dimethylpyridine N-benzoylimide and ascribed as arising via a concerted four-atom process $[(16) \rightarrow (17)]$ favoured by the steric

effects of the 2,6-methyl groups. Quinoline and isoquinoline N-nitroimide fragmentation are in agreement with analogous routes implied 23 for isoquinoline Nbenzoylimides.

Routes corresponding to (a) and (b) above have

²⁵ R. A. Abramovitch and T. Takaya, J. Org. Chem., 1973, 38,

3311. ²⁶ R. Huisgen, R. Grashey, and A. Eckell, Ger. P. 1,203,793/ 1965 (Chem. Abs., 1966, 64, 3,554h).

J.C.S. Perkin II

recently been invoked by Abramovitch²⁵ in the mass spectral fragmentation of pyridine N-phenylsulphonylimides.

EXPERIMENTAL

Spectroscopy.—The mass spectra were recorded using a Hitachi-Perkin-Elmer RMU 6-E single focusing mass spectrometer. I.r. spectra were measured using KBr discs on a Perkin-Elmer model 127 i.r. spectrophotometer. pK_a Measurements were carried out in sulphuric acid by the u.v. spectrophotometric method. U.v. spectra were recorded on Unicam SP 500 and SP 800 spectrophotometers.

Dimethyl Pyrazolo[1,5-a]pyridine-2,3-dicarboxylate.—Pyridine N-nitroimide (0.5 g, 0.0036 mol) was heated under reflux with dimethyl acetylenedicarboxylate (2 g) in MeCN (30 ml) for 6 days. After removal of solvent under vacuum, the residue was thick layer chromatographed (silica; CHCl₃ eluant). The ester was crystallised from ether-light petroleum (40-60 °C), m.p. 66-66.5 °C (lit.,²⁶ 69-70 °C) (42%) (Found: C, 56.1; H, 4.3; N, 12.3. Calc. for $C_{11}H_{10}N_2O_4$: C, 56.4; H, 4.3; N, 12.0%); v_{max} . (Nujol) 1 690 and 1 730 (C=O) cm⁻¹; τ (CCl₄) 6.2 (3 H, s), 6.1 (3 H, s), 3.2-2.5 (2 H, m), 2.6 (1 H, d, J 7.5 Hz), and 1.5 (1 H, d, J 6 Hz).

2-[2-(2,5-Dimethyl-1-phenylpyrrol-3-yl)vinyl]pyridine 1-Nitroimide (11).—2-Methylpyridine 1-nitroimide (0.156 g, 0.001 mol), 2,5-dimethyl-1-phenylpyrrole-3-carbaldehyde (0.199 g, 0.001 mol), ethanol (30 ml), and piperidine (0.1 g), were kept at 20 °C for 12 h and then at 40 °C for 6 h. The precipitate crystallised from N-methyl-2-pyrrolidone as yellow plates of the condensation product (90%), m.p. 187 °C (Found: C, 67.4; H, 5.6; N, 16.7. C₁₉H₁₈N₄O₂ requires C, 68.0; H, 5.7; N, 16.7%).

Reaction of Pyridine 1-Nitroimide with Acetic Anhydride.---Pyridine 1-nitroimide (0.5 g, 0.0036 mol) and Ac₂O (30 ml) were heated under reflux for 30 min, neutralised, and extracted with ether to give pyridine, characterised as the picrate (0.55 g, 50%), m.p. 165 °C (lit., 27 167-168 °C).

Reaction between Pyridine 1-Nitroimide with Phosphorus Trichloride.-Pyridine 1-nitroimide (1.0 g, 0.0072 mol) and phosphorus trichloride (2.5 ml) were heated at 100 °C for 30 min, diluted with water, and the mixture made alkaline. Extraction with CHCl₈ followed by evaporation of the dried extract gave an oil (0.4 g, 80%). I.r., n.m.r., and examination of the picrate derivative indicated it to be pyridine.

We thank the S.R.C. for Research Assistantships (to J. E., J. M. W., and S. Q. A. R.)

[5/304 Received, 13th February, 1975]

27 J. P. Wibaut and L. M. F. Van de Lande, Rec. Trav. chim., 1929, 48, 1005.